卷积神经网络
卷积神经网络的核心是卷积核,卷积核在图像处理领域可以用来提取图像的纵向和横向特征。
卷积核的大小一般为奇数,如3x3,5x5,7x7等,卷积核通常与图像处理(over padding)后的图像进行卷积操作,卷积核在图像上滑动,每次滑动一个像素,对应位置的像素值与卷积核对应位置的值相乘,然后求和,最后将求和的结果作为卷积核中心像素的值,这样就得到了一个新的图像。
新的图像可以用更少的数据反应出图像的特征。这个过程就是特征提取。
我们从一个6x6的矩阵开始:
A=a11a21a31a41a51a61a12a22a32a42a52a62a13a23a33