C语言基础
流程控制基本概念
- 默认情况下程序运行后,系统会按书写顺序从上至下依次执行程序中的每一行代码。但是这并不能满足我们所有的开发需求, 为了方便我们控制程序的运行流程,C 语言提供 3 种流程控制结构,不同的流程控制结构可以实现不同的运行流程。
- 这 3 种流程结构分别是顺序结构、选择结构、循环结构
- 顺序结构:
- 按书写顺序从上至下依次执行
- 选择结构
- 对给定的条件进行判断,再根据判断结果来决定执行代码
- 循环结构
- 在给定条件成立的情况下,反复执行某一段代码
选择结构
-
C 语言中提供了两大选择结构, 分别是 if 和 switch
选择结构 if
-
if 第一种形式
- 表示如果表达式为真,执行语句块 1,否则不执行
if(表达式) {
语句块1;
}
后续语句;
if(age >= 18) {
printf("开网卡\n");
}
printf("买烟\n");
- if 第二种形式
- 如果表达式为真,则执行语句块 1,否则执行语句块 2
- else 不能脱离 if 单独使用
if(表达式){
语句块1;
}else{
语句块2;
}
后续语句;
if(age > 18){
printf("开网卡\n");
}else{
printf("喊家长来开\n");
}
printf("买烟\n");
- if 第三种形式
- 如果"表达式 1"为真,则执行"语句块 1",否则判断"表达式 2",如果为真执行"语句块 2",否则再判断"表达式 3",如果真执行"语句块 3", 当表达式 1、2、3 都不满足,会执行最后一个 else 语句
- 众多大括号中,只有一个大括号中的内容会被执行
- 只有前面所有添加都不满足, 才会执行 else 大括号中的内容
if(表达式1) {
语句块1;
}else if(表达式2){
语句块2;
}else if(表达式3){
语句块3;
}else{
语句块4;
}
后续语句;
if(age>40){
printf("给房卡");
}else if(age>25){
printf("给名片");
}else if(age>18){
printf("给网卡");
}else{
printf("给好人卡");
}
printf("买烟\n");
- if 嵌套
- if 中可以继续嵌套 if, else 中也可以继续嵌套 if
if(表达式1){
语句块1;
if(表达式2){
语句块2;
}
}else{
if(表达式3){
语句块3;
}else{
语句块4;
}
}
- if 注意点
- 任何数值都有真假性
#include <stdio.h>
int main(){
if(0){
printf("执行了if");
}else{
printf("执行了else"); // 被执行
}
}
- 当 if else 后面只有一条语句时, if else 后面的大括号可以省略
// 极其不推荐写法
int age = 17;
if (age >= 18)
printf("开网卡\n");
else
printf("喊家长来开\n");
- 当 if else 后面的大括号被省略时, else 会自动和距离最近的一个 if 匹配
#include <stdio.h>
int main(){
if(0)
if(1)
printf("A\n");
else // 和if(1)匹配
printf("B\n");
else // 和if(0)匹配, 因为if(1)已经被匹配过了
if (1)
printf("C\n"); // 输出C
else // 和if(1)匹配
printf("D\n");
}
-
- 如果 if else 省略了大括号, 那么后面不能定义变量
#include <stdio.h>
int main(){
if(1)
int number = 10; // 系统会报错
printf("number = %i\n", number);
}
#include <stdio.h>
int main(){
if(0){
int number = 10;
}else
int value = 20; // 系统会报错
printf("value = %i\n", value);
}
- C 语言中分号(;)也是一条语句, 称之为空语句
// 因为if(10 > 2)后面有一个分号, 所以系统会认为if省略了大括号
// if省略大括号时只能管控紧随其后的那条语句, 所以只能管控分号
if(10 > 2);
{
printf("10 > 2");
}
// 输出结果: 10 > 2
- 但凡遇到比较一个变量等于或者不等于某一个常量的时候,把常量写在前面
#include <stdio.h>
int main(){
int a = 8;
// if(a = 10){// 错误写法, 但不会报错
if (10 == a){
printf("a的值是10\n");
}else{
printf("a的值不是10\n");
}
}
-
if 练习
- 从键盘输入一个整数,判断其是否是偶数,如果是偶数就输出 YES,否则输出 NO;
- 接收用户输入的 1 ~ 7 的整数,根据用户输入的整数,输出对应的星期几
- 接收用户输入的一个整数 month 代表月份,根据月份输出对应的季节
- 接收用户输入的两个整数,判断大小后输出较大的那个数
- 接收用户输入的三个整数,判断大小后输出较大的那个数
- 接收用户输入的三个整数,排序后输出
-
实现石头剪刀布
剪刀石头布游戏:
1)定义游戏规则
剪刀 干掉 布
石头 干掉 剪刀
布 干掉石头
2)显示玩家开始猜拳
3)接收玩家输入的内容
4)让电脑随机产生一种拳
5)判断比较
(1)玩家赢的情况(显示玩家赢了)
(2)电脑赢的情况(显示电脑赢了)
(3)平局(显示平局)
选择结构 switch
- 由于 if else if 还是不够简洁,所以 switch 就应运而生了,他跟 if else if 互为补充关系。switch 提供了点的多路选择
- 格式:
switch(表达式){
case 常量表达式1:
语句1;
break;
case 常量表达式2:
语句2;
break;
case 常量表达式n:
语句n;
break;
default:
语句n+1;
break;
}
- 语义:
- 计算"表达式"的值, 逐个与其后的"常量表达式"值相比较,当"表达式"的值与某个"常量表达式"的值相等时, 即执行其后的语句, 然后跳出 switch 语句
- 如果"表达式"的值与所有 case 后的"常量表达式"均不相同时,则执行 default 后的语句
- 示例:
#include <stdio.h>
int main() {
int num = 3;
switch(num){
case 1:
printf("星期一\n");
break;
case 2:
printf("星期二\n");
break;
case 3:
printf("星期三\n");
break;
case 4:
printf("星期四\n");
break;
case 5:
printf("星期五\n");
break;
case 6:
printf("星期六\n");
break;
case 7:
printf("星期日\n");
break;
default:
printf("回火星去\n");
break;
}
}
- switch 注意点
- switch 条件表达式的类型必须是整型, 或者可以被提升为整型的值(char、short)
#include <stdio.h>
int main() {
switch(1.1){ // 报错
case 1:
printf("星期一\n");
break;
case 2:
printf("星期二\n");
break;
default:
printf("回火星去\n");
break;
}
}
- +case 的值只能是常量, 并且还必须是整型, 或者可以被提升为整型的值(char、short)
#include <stdio.h>
int main() {
int num = 3;
switch(1){
case 1:
printf("星期一\n");
break;
case 'a':
printf("星期二\n");
break;
case num: // 报错
printf("星期三\n");
break;
case 4.0: // 报错
printf("星期四\n");
break;
default:
printf("回火星去\n");
break;
}
}
- case 后面常量表达式的值不能相同
#include <stdio.h>
int main() {
switch(1){
case 1: // 报错
printf("星期一\n");
break;
case 1: // 报错
printf("星期一\n");
break;
default:
printf("回火星去\n");
break;
}
}
- case 后面要想定义变量,必须给 case 加上大括号
#include <stdio.h>
int main() {
switch(1){
case 1:{
int num = 10;
printf("num = %i\n", num);
printf("星期一\n");
break;
}
case 2:
printf("星期一\n");
break;
default:
printf("回火星去\n");
break;
}
}
- switch 中只要任意一个 case 匹配, 其它所有的 case 和 default 都会失效. 所以如果 case 和 default 后面没有 break 就会出现穿透问题
#include <stdio.h>
int main() {
int num = 2;
switch(num){
case 1:
printf("星期一\n");
break;
case 2:
printf("星期二\n"); // 被输出
case 3:
printf("星期三\n"); // 被输出
default:
printf("回火星去\n"); // 被输出
break;
}
}
- switch 中 default 可以省略
#include <stdio.h>
int main() {
switch(1){
case 1:
printf("星期一\n");
break;
case 2:
printf("星期一\n");
break;
}
}
- switch 中 default 的位置不一定要写到最后, 无论放到哪都会等到所有 case 都不匹配才会执行(穿透问题除外)
#include <stdio.h>
int main() {
switch(3){
case 1:
printf("星期一\n");
break;
default:
printf("Other,,,\n");
break;
case 2:
printf("星期一\n");
break;
}
}
- if 和 Switch 转换
- 看上去 if 和 switch 都可以实现同样的功能, 那么在企业开发中我们什么时候使用 if, 什么时候使用 switch 呢?
- if else if 针对于范围的多路选择
- switch 是针对点的多路选择
- 判断用户输入的数据是否大于 100
#include <stdio.h>
int main() {
int a = -1;
scanf("%d", &a);
if(a > 100){
printf("用户输入的数据大于100");
}else{
printf("用户输入的数据不大于100");
}
}
#include <stdio.h>
int main() {
int a = -1;
scanf("%d", &a);
// 挺(T)萌(M)的(D)搞不定啊
switch (a) {
case 101:
case 102:
case 103:
case 104:
case 105:
printf("大于\n");
break;
default:
printf("不大于\n");
break;
}
}
- 练习
- 实现分数等级判定
要求用户输入一个分数,根据输入的分数输出对应的等级
A 90~100
B 80~89
C 70~79
D 60~69
E 0~59
- 实现+ - * / 简单计算器
循环结构
- C 语言中提供了三大循环结构, 分别是 while、dowhile 和 for
- 循环结构是程序中一种很重要的结构。
- 其特点是,在给定条件成立时,反复执行某程序段, 直到条件不成立为止。
- 给定的条件称为"循环条件",反复执行的程序段称为"循环体"
循环结构 while
- 格式:
while ( 循环控制条件 ) {
循环体中的语句;
能够让循环结束的语句;
....
}
-
构成循环结构的几个条件
- 循环控制条件
- 循环退出的主要依据,来控制循环到底什么时候退出
- 循环体
- 循环的过程中重复执行的代码段
- 能够让循环结束的语句(递增、递减、真、假等)
- 能够让循环条件为假的依据,否则退出循环
- 循环控制条件
-
示例:
int count = 0;
while (count < 3) { // 循环控制条件
printf("发射子弹~哔哔哔哔\n"); // 需要反复执行的语句
count++; // 能够让循环结束的语句
}
- while 循环执行流程
- 首先会判定"循环控制条件"是否为真, 如果为假直接跳到循环语句后面
- 如果"循环控制条件"为真, 执行一次循环体, 然后再次判断"循环控制条件"是否为真, 为真继续执行循环体,为假跳出循环
- 重复以上操作, 直到"循环控制条件"为假为止
#include <stdio.h>
int main(){
int count = 4;
// 1.判断循环控制条件是否为真,此时为假所以跳过循环语句
while (count < 3) {
printf("发射子弹~哔哔哔哔\n");
count++;
}
// 2.执行循环语句后面的代码, 打印"循环执行完毕"
printf("循环执行完毕\n");
}
#include <stdio.h>
int main(){
int count = 0;
// 1.判断循环控制条件是否为真,此时0 < 3为真
// 4.再次判断循环控制条件是否为真,此时1 < 3为真
// 7.再次判断循环控制条件是否为真,此时2 < 3为真
// 10.再次判断循环控制条件是否为真,此时3 < 3为假, 跳过循环语句
while (count < 3) {
// 2.执行循环体中的代码, 打印"发子弹"
// 5.执行循环体中的代码, 打印"发子弹"
// 8.执行循环体中的代码, 打印"发子弹"
printf("发射子弹~哔哔哔哔\n");
// 3.执行"能够让循环结束的语句" count = 1
// 6.执行"能够让循环结束的语句" count = 2
// 9.执行"能够让循环结束的语句" count = 3
count++;
}
// 11.执行循环语句后面的代码, 打印"循环执行完毕"
printf("循环执行完毕\n");
}
- while 循环注意点
- 任何数值都有真假性
#include <stdio.h>
int main(){
while (1) { // 死循环
printf("发射子弹~哔哔哔哔\n");
// 没有能够让循环结束的语句
}
}
- 当 while 后面只有一条语句时,while 后面的大括号可以省略
#include <stdio.h>
int main(){
while (1) // 死循环
printf("发射子弹~哔哔哔哔\n");
// 没有能够让循环结束的语句
}
- 如果 while 省略了大括号, 那么后面不能定义变量
#include <stdio.h>
int main(){
while (1) // 死循环
int num = 10; // 报错
// 没有能够让循环结束的语句
}
- C 语言中分号(;)也是一条语句, 称之为空语句
#include <stdio.h>
int main(){
int count = 0;
while (count < 3);{ // 死循环
printf("发射子弹~哔哔哔哔\n");
count++;
}
}
- 最简单的死循环
// 死循环一般在操作系统级别的应用程序会比较多, 日常开发中很少用
while (1);
- while 练习
- 计算 1 + 2 + 3 + ...n 的和
- 获取 1 ~ 100 之间 7 的倍数的个数
循环结构 do while
- 格式:
do {
循环体中的语句;
能够让循环结束的语句;
....
} while (循环控制条件 );
- 示例
int count = 0;
do {
printf("发射子弹~哔哔哔哔\n");
count++;
}while(count < 10);
-
do-while 循环执行流程
- 首先不管 while 中的条件是否成立, 都会执行一次"循环体"
- 执行完一次循环体,接着再次判断 while 中的条件是否为真, 为真继续执行循环体,为假跳出循环
- 重复以上操作, 直到"循环控制条件"为假为止
-
应用场景
- 口令校验
#include<stdio.h>
int main()
{
int num = -1;
do{
printf("请输入密码,验证您的身份\n");
scanf("%d", &num);
}while(123456 != num);
printf("主人,您终于回来了\n");
}
- while 和 dowhile 应用场景
- 绝大多数情况下 while 和 dowhile 可以互换, 所以能用 while 就用 while
- 无论如何都需要先执行一次循环体的情况, 才使用 dowhile
- do while 曾一度提议废除,但是他在输入性检查方面还是有点用的
循环结构 for
- 格式:
for(初始化表达式;循环条件表达式;循环后的操作表 达式) {
循环体中的语句;
}
- 示例
for(int i = 0; i < 10; i++){
printf("发射子弹~哔哔哔哔\n");
}
-
for 循环执行流程
- 首先执行"初始化表达式",而且在整个循环过程中,只会执行一次初始化表达式
- 接着判断"循环条件表达式"是否为真,为真执行循环体中的语句
- 循环体执行完毕后,接下来会执行"循环后的操作表达式",然后再次判断条件是否为真,为真继续执行循环体,为假跳出循环
- 重复上述过程,直到条件不成立就结束 for 循环
-
for 循环注意点:
- 和 while 一模一样
- 最简单的死循环
for(;;);
-
for 和 while 应用场景
- while 能做的 for 都能做, 所以企业开发中能用 for 就用 for, 因为 for 更为灵活
- 而且对比 while 来说 for 更节约内存空间
int count = 0; // 初始化表达式
while (count < 10) { // 条件表达式
printf("发射子弹~哔哔哔哔 %i\n", count);
count++; // 循环后增量表达式
}
// 如果初始化表达式的值, 需要在循环之后使用, 那么就用while
printf("count = %i\n", count);
// 注意: 在for循环初始化表达式中定义的变量, 只能在for循环后面的{}中访问
// 所以: 如果初始化表达式的值, 不需要在循环之后使用, 那么就用for
// 因为如果初始化表达式的值, 在循环之后就不需要使用了 , 那么用while会导致性能问题
for (int count = 0; count < 10; count++) {
printf("发射子弹~哔哔哔哔 %i\n", count);
}
// printf("count = %i\n", count);
// 如果需要使用初始化表达式的值, 也可以将初始化表达式写到外面
int count = 0;
for (; count < 10; count++) {
printf("发射子弹~哔哔哔哔\n", count);
}
printf("count = %i\n", count);
四大跳转
- C 语言中提供了四大跳转语句, 分别是 return、break、continue、goto
- break:
- 立即跳出 switch 语句或循环
- 应用场景:
- switch
- 循环结构
- break 注意点:
- break 离开应用范围,存在是没有意义的
if(1) {
break; // 会报错
}
- 在多层循环中,一个 break 语句只向外跳一层
while(1) {
while(2) {
break;// 只对while2有效, 不会影响while1
}
printf("while1循环体\n");
}
- break 下面不可以有语句,因为执行不到
while(2){
break;
printf("打我啊!");// 执行不到
}
- continue
- 结束本轮循环,进入下一轮循环
- 应用场景:
- 循环结构
- continue 注意点:
- continue 离开应用范围,存在是没有意义的
if(1) {
continue; // 会报错
}
- goto
- 这是一个不太值得探讨的话题,goto 会破坏结构化程序设计流程,它将使程序层次不清,且不易读,所以慎用
- goto 语句,仅能在本函数内实现跳转,不能实现跨函数跳转(短跳转)。但是他在跳出多重循环的时候效率还是蛮高的
#include <stdio.h>
int main(){
int num = 0;
// loop:是定义的标记
loop:if(num < 10){
printf("num = %d\n", num);
num++;
// goto loop代表跳转到标记的位置
goto loop;
}
}
#include <stdio.h>
int main(){
while (1) {
while(2){
goto lnj;
}
}
lnj:printf("跳过了所有循环");
}
- return
- 结束当前函数,将结果返回给调用者
- 不着急, 放一放,学到函数我们再回头来看它
循环的嵌套
- 循环结构的循环体中存在其他的循环结构,我们称之为循环嵌套
- 注意: 一般循环嵌套不超过三层
- 外循环执行的次数 * 内循环执行的次数就是内循环总共执行的次数
- 格式:
while(条件表达式) {
while循环结构 or dowhile循环结构 or for循环结构
}
for(初始化表达式;循环条件表达式;循环后的操作表达式) {
while循环结构 or dowhile循环结构 or for循环结构
}
do {
while循环结构 or dowhile循环结构 or for循环结构
} while (循环控制条件 );
- 循环优化
- 在多重循环中,如果有可能,应当将最长的循环放在最内层,最短的循环放在最外层,以减少 CPU 跨切循环层的次数
for (row=0; row<100; row++) {
// 低效率:长循环在最外层
for ( col=0; col<5; col++ ) {
sum = sum + a[row][col];
}
}
for (col=0; col<5; col++ ) {
// 高效率:长循环在最内层
for (row=0; row<100; row++) {
sum = sum + a[row][col];
}
}
- 练习
- 打印好友列表
好友列表1
好友1
好友2
好友列表2
好友1
好友2
好友列表3
好友1
好友2
for (int i = 0; i < 4; i++) {
printf("好友列表%d\n", i+1);
for (int j = 0; j < 4; j++) {
printf(" 角色%d\n", j);
}
}
C 语言图形打印
- 一重循环解决线性的问题,而二重循环和三重循环就可以解决平面和立体的问题了
- 打印矩形
****
****
****
// 3行4列
// 外循环控制行数
for (int i = 0; i < 3; i++) {
// 内循环控制列数
for (int j = 0; j < 4; j++) {
printf("*");
}
printf("\n");
}
- 打印三角形
- 尖尖朝上,改变内循环的条件表达式,让内循环的条件表达式随着外循环的 i 值变化
- 尖尖朝下,改变内循环的初始化表达式,让内循环的初始化表达式随着外循环的 i 值变化
*
**
***
****
*****
/*
最多打印5行
最多打印5列
每一行和每一列关系是什么? 列数<=行数
*/
for(int i = 0; i< 5; i++) {
for(int j = 0; j <= i; j++) {
printf("*");
}
printf("\n");
}
*****
****
***
**
*
for(int i = 0; i< 5; i++) {
for(int j = i; j < 5; j++) {
printf("*");
}
printf("\n");
}
- 练习
- 打印特殊三角形
1
12
123
for (int i = 0; i < 3; i++) {
for (int j = 0; j <= i; j++) {
printf("%d", j+1);
}
printf("\n");
}
-
- 打印特殊三角形
1
22
333
for (int i = 1; i <= 3; i++) {
for (int j = 1; j <= i; j++) {
printf("%d", i);
}
printf("\n");
}
-
- 打印特殊三角形
--*
-***
*****
for (int i = 0; i <= 5; i++) {
for (int j = 0; j < 5 - i; j++) {
printf("-");
}
for (int m = 0; m < 2*i+1; m++) {
printf("*");
}
printf("\n");
}
-
- 打印 99 乘法表
1 * 1 = 1
1 * 2 = 2 2 * 2 = 4
1 * 3 = 3 2 * 3 = 6 3 * 3 = 9
for (int i = 1; i <= 9; i++) {
for (int j = 1; j <= i; j++) {
printf("%d * %d = %d \t", j, i, (j * i));
}
printf("\n");
}
函数基本概念
- C 源程序是由函数组成的
- 例如: 我们前面学习的课程当中,通过 main 函数+scanf 函数+printf 函数+逻辑代码就可以组成一个 C 语言程序
- C 语言不仅提供了极为丰富的库函数, 还允许用户建立自己定义的函数。用户可把自己的算法编写成一个个相对独立的函数,然后再需要的时候调用它
- 例如:你用 C 语言编写了一个 MP3 播放器程序,那么它的程序结构如下图所示
- 可以说 C 程序的全部工作都是由各式各样的函数完成的,所以也把 C 语言称为函数式语言
函数的分类
- 在 C 语言中可从不同的角度对函数分类
- 从函数定义的角度看,函数可分为库函数和用户定义函数两种
- 库函数: 由 C 语言系统提供,用户无须定义,也不必在程序中作类型说明,只需在程序前包含有该函数原型的头文件即可在程序中直接调用。在前面各章的例题中反复用到 printf、scanf、getchar、putchar 等函数均属此类
- 用户定义函数:由用户按需编写的函数。对于用户自定义函数,不仅要在程序中定义函数本身,而且在主调函数模块中还必须对该被调函数进行类型说明,然后才能使用
- 从函数执行结果的角度来看, 函数可分为有返回值函数和无返回值函数两种
- 有返回值函数: 此类函数被调用执行完后将向调用者返回一个执行结果,称为函数返回值。(必须指定返回值类型和使用 return 关键字返回对应数据)
- 无返回值函数: 此类函数用于完成某项特定的处理任务,执行完成后不向调用者返回函数值。(返回值类型为 void, 不用使用 return 关键字返回对应数据)
- 从主调函数和被调函数之间数据传送的角度看,又可分为无参函数和有参函数两种
- 无参函数: 在函数定义及函数说明及函数调用中均不带参数。主调函数和被调函数之间不进行参数传送。
- 有参函数: 在函数定义及函数说明时都有参数,称为形式参数(简称为形参)。在函数调用时也必须给出参数,称为实际参数(简称为实参)
函数的定义
- 定义函数的目的
- 将一个常用的功能封装起来,方便以后调用
- 自定义函数 的书写格式
返回值类型 函数名(参数类型 形式参数1,参数类型 形式参数2,…) {
函数体;
返回值;
}
- 示例
int main(){
printf("hello world\n");
retrun 0;
}
- 定义函数的步骤
- 函数名:函数叫什么名字
- 函数体:函数是干啥的,里面包含了什么代码
- 返回值类型: 函数执行完毕返回什么和调用者
- 无参无返回值函数定义
-
没有返回值时 return 可以省略
-
格式:
void 函数名() {
函数体;
} -
示例:
// 1.没有返回值/没有形参
// 如果一个函数不需要返回任何数据给调用者, 那么返回值类型就是void
void printRose() {
printf(" {@}\n");
printf(" |\n");
printf(" \\|/\n"); // 注意: \是一个特殊的符号(转意字符), 想输出\必须写两个斜线
printf(" |\n");
// 如果函数不需要返回数据给调用者, 那么函数中的return可以不写
}
- 无参有返回值函数定义
-
格式:
返回值类型 函数名() {
函数体;
return 值;
} -
示例:
int getMax() {
printf("请输入两个整数, 以逗号隔开, 以回车结束\n");
int number1, number2;
scanf("%i,%i", &number1, &number2);
int max = number1 > number2 ? number1 : number2;
return max;
}
- 有参无返回值函数定义
-
形式参数表列表的格式:
类型 变量名,类型 变量2,......
-
格式:
void 函数名(参数类型 形式参数1,参数类型 形式参数2,…) {
函数体;
} -
示例:
void printMax(int value1, int value2) {
int max = value1 > value2 ? value1 : value2;
printf("max = %i\n", max);
}
- 有参有返回值函数定义
-
格式:
返回值类型 函数名(参数类型 形式参数1,参数类型 形式参数2,…) {
函数体;
return 0;
} -
示例:
int printMax(int value1, int value2) {
int max = value1 > value2 ? value1 : value2;
return max;
}
-
函数定义注意
-
函数名称不能相同
void test() {
}
void test() { // 报错
}
函数的参数和返回值
- 形式参数
- 在***定 义函数***时,函数名后面小括号()中定义的变量称为形式参数,简称形参
- 形参变量只有在被调用时才分配内存单元,在调用结束时,即刻释放所分配的内存单元。
- 因此,形参只有在函数内部有效,函数调用结束返回主调函数后则不能再使用该形参变量
int max(int number1, int number2) // 形式参数
{
return number1 > number2 ? number1 : number2;
}
- 实际参数
- 在***调用函数***时, 传入的值称为实际参数,简称实参
- 实参可以是常量、变量、表达式、函数等,无论实参是何种类型的量,在进行函数调用时,它们都必须具有确定的值,以便把这些值传送给形参
- 因此应预先用赋值,输入等办法使实参获得确定值
int main() {
int num = 99;
// 88, num, 22+44均能得到一个确定的值, 所以都可以作为实参
max(88, num, 22+44); // 实际参数
return 0;
}
-
形参、实参注意点
- 调用函数时传递的实参个数必须和函数的形参个数必须保持一致
int max(int number1, int number2) { // 形式参数
return number1 > number2 ? number1 : number2;
}
int main() {
// 函数需要2个形参, 但是我们只传递了一个实参, 所以报错
max(88); // 实际参数
return 0;
} -
- 形参实参类型不一致, 会自动转换为形参类型
void change(double number1, double number2) {// 形式参数
// 输出结果: 10.000000, 20.000000
// 自动将实参转换为double类型后保存
printf("number1 = %f, number2 = %f", number1, number2);
}
int main() {
change(10, 20);
return 0;
} -
- 当使用基本数据类型(char、int、float 等)作为实参时,实参和形参之间只是值传递,修改形参的值并不影响到实参函数可以没有形参
void change(int number1, int number2) { // 形式参数
number1 = 250; // 不会影响实参
number2 = 222;
}
int main() {
int a = 88;
int b = 99;
change(a, b);
printf("a = %d, b = %d", a, b); // 输出结果: 88, 99
return 0;
}
-
返回值类型注意点
- 如果没有写返回值类型,默认是 int
max(int number1, int number2) {// 形式参数
return number1 > number2 ? number1 : number2;
} -
- 函数返回值的类型和 return 实际返回的值类型应保持一致。如果两者不一致,则以返回值类型为准,自动进行类型转换
int height() {
return 3.14;
}
int main() {
double temp = height();
printf("%lf", temp);// 输出结果: 3.000000
} -
- 一个函数内部可以多次使用 return 语句,但是 return 语句后面的代码就不再被执行
int max(int number1, int number2) {// 形式参数
return number1 > number2 ? number1 : number2;
printf("执行不到"); // 执行不到
return 250; // 执行不到
}
函数的声明
- 在 C 语言中,函数的定义顺序是有讲究的:
- 默认情况下,只有后面定义的函数才可以调用前面定义过的函数
- 如果想把函数的定义写在 main 函数后面,而且 main 函数能正常调用这些函数,那就必须在 main 函数的前面进行函数的声明, 否则
- 系统搞不清楚有没有这个函数
- 系统搞不清楚这个函数接收几个参数
- 系统搞不清楚这个函数的返回值类型是什么
- 所以函数声明,就是在函数调用之前告诉系统, 该函数叫什么名称, 该函数接收几个参数, 该函数的返回值类型是什么
- 函数的声明格式:
- 将自定义函数时之前的内容拷贝到调用之间即可
- 例如:
int max( int a, int b );
- 或者:
int max( int, int );
// 函数声明
void getMax(int v1, int v2);
int main(int argc, const char * argv[]) {
getMax(10, 20); // 调用函数
return 0;
}
// 函数实现
void getMax(int v1, int v2) {
int max = v1 > v2 ? v1 : v2;
printf("max = %i\n", max);
}
- 函数的声明与实现的关系
- 声明仅仅代表着告诉系统一定有这个函数, 和这个函数的参数、返回值是什么
- 实现代表着告诉系统, 这个函数具体的业务逻辑是怎么运作的
- 函数声明注意点:
-
函数的实现不能重复, 而函数的声明可以重复
// 函数声明
void getMax(int v1, int v2);
void getMax(int v1, int v2);
void getMax(int v1, int v2); // 不会报错
int main(int argc, const char * argv[]) {
getMax(10, 20); // 调用函数
return 0;
}
// 函数实现
void getMax(int v1, int v2) {
int max = v1 > v2 ? v1 : v2;
printf("max = %i\n", max);
}
-
函数声明可以写在函数外面,也可以写在函数里面, 只要在调用之前被声明即可
int main(int argc, const char * argv[]) {
void getMax(int v1, int v2); // 函数声明, 不会报错
getMax(10, 20); // 调用函数
return 0;
}
// 函数实现
void getMax(int v1, int v2) {
int max = v1 > v2 ? v1 : v2;
printf("max = %i\n", max);
} -
当被调函数的函数定义出现在主调函数之前时,在主调函数中也可以不对被调函数再作声明
// 函数实现
void getMax(int v1, int v2) {
int max = v1 > v2 ? v1 : v2;
printf("max = %i\n", max);
}
int main(int argc, const char * argv[]) {
getMax(10, 20); // 调用函数
return 0;
} -
如果被调函数的返回值是整型时,可以不对被调函数作说明,而直接调用
int main(int argc, const char * argv[]) {
int res = getMin(5, 3); // 不会报错
printf("result = %d\n", res );
return 0;
}
int getMin(int num1, int num2) {// 返回int, 不用声明
return num1 < num2 ? num1 : num2;
}
main 函数分析
- main 的含义:
- main 是函数的名称, 和我们自定义的函数名称一样, 也是一个标识符
- 只不过 main 这个名称比较特殊, 程序已启动就会自动调用它
- return 0;的含义:
- 告诉系统 main 函数是否正确的被执行了
- 如果 main 函数的执行正常, 那么就返回 0
- 如果 main 函数执行不正常, 那么就返回一个非 0 的数
- 返回值类型:
- 一个函数 return 后面写 的是什么类型, 函数的返回值类型就必须是什么类型, 所以写 int
- 形参列表的含义
- int argc :
- 系统在启动程序时调用 main 函数时传递给 argv 的值的个数
- const char * argv[] :
- 系统在启动程序时传入的的值, 默认情况下系统只会传入一个值, 这个值就是 main 函数执行文件的路径
- 也可以通过命令行或项目设置传入其它参数
- 函数练习
- 写一个函数从键盘输入三个整型数字,找出其最大值
- 写一个函数求三个数的平均值
递归函数
- 什么是递归函数?
-
一个函数在它的函数体内调用它自身称为递归调用
void function(int x){
function(x);
}
- 递归函数构成条件
- 自己搞自己
- 存在一个条件能够让递归结束
- 问题的规模能够缩小
- 示例:
- 获取用户输入的数字, 直到用户输入一个正 数为止
void getNumber(){
int number = -1;
while (number < 0) {
printf("请输入一个正数\n");
scanf("%d", &number);
}
printf("number = %d\n", number);
}
void getNumber2(){
int number = -1;
printf("请输入一个正数abc\n");
scanf("%d", &number);
if (number < 0) {
// 负数
getNumber2();
}else{
// 正数
printf("number = %d\n", number);
}
}
- 递归和循环区别
- 能用循环实现的功能,用递归都可以实现
- 递归常用于"回溯", "树的遍历","图的搜索"等问题
- 但代码理解难度大,内存消耗大(易导致栈溢出), 所以考虑到代码理解难度和内存消耗问题, 在企业开发中一般能用循环都不会使用递归
- 递归练习
- 有 5 个人坐在一起,问第 5 个人多少岁?他说比第 4 个人大两岁。问 第 4 个人岁数,他说比第 3 个人大两岁。问第 3 个人,又说比第 2 个 人大两岁。问第 2 个人,说比第 1 个人大两岁。最后问第 1 个人, 他说是 10 岁。请问第 5 个人多大?
- 用递归法求 N 的阶乘
- 设计一个函数用来计算 B 的 n 次方
进制基本概念
- 什么是进制?
- 进制是一种计数的方式,数值的表示形式
- 常见的进制
- 十进制、二进制、八进制、十六进制
- 进制 书写的格式和规律
- 十进制 0、1、2、3、4、5、6、7、8、9 逢十进一
- 二进制 0、1 逢二进一
- 书写形式:需要以 0b 或者 0B 开头,例如: 0b101
- 八进制 0、1、2、3、4、5、6、7 逢八进一
- 书写形式:在前面加个 0,例如: 061
- 十六进制 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 逢十六进一
- 书写形式:在前面加个 0x 或者 0X,例如: 0x45
- 练习
-
1.用不同进制表示如下有多少个方格
-
2.判断下列数字是否合理
00011 0x001 0x7h4 10.98 0986 .089-109
+178 0b325 0b0010 0xffdc 96f 96.0f 96.oF -.003
进制转换
- 10 进制转 2 进制
- 除 2 取余, 余数倒序; 得到的序列就是二进制表示形式
- 例如: 将十进制(97) 10 转换为二进制数
-
2 进制转 10 进制
- 每一位二进制进制位的值 * 2 的当前索引次幂; 再将所有位求出的值相加
- 例如: 将二进制 01100100 转换为十进制
01100100
索引从右至左, 从零开始
第0位: 0 * 2^0 = 0;
第1位: 0 * 2^1 = 0;
第2位: 1 * 2^2 = 4;
第3位: 0 * 2^3 = 0;
第4位: 0 * 2^4 = 0;
第5位: 1 * 2^5 = 32;
第6位: 1 * 2^6 = 64;
第7位: 0 * 2^7 = 0;
最终结果为: 0 + 0 + 4 + 0 + 0 + 32 + 64 + 0 = 100
-
2 进制转 8 进制
- 三个二进制位代表一个八进制位, 因为 3 个二进制位的最大值是 7,而八进制是逢 8 进 1
- 例如: 将二进制 01100100 转换为八进制数
从右至左每3位划分为8进制的1位, 不够前面补0
001 100 100
第0位: 100 等于十进制 4
第1位: 100 等于十进制 4
第2位: 001 等于十进制 1
最终结果: 144就是转换为8进制的值
-
2 进制转 16 进制
- 四个二进制位代表一个十六进制位,因为 4 个二进制位的最大值是 15,而十六进制是逢 16 进 1
- 例如: 将二进制 01100100 转换为十六进制数
从右至左每4位划分为16进制的1位, 不够前面补0
0110 0100
第0位: 0100 等于十进制 4
第1位: 0110 等于十进制 6
最终结果: 64就是转换为16进制的值
-
其它进制转换为十进制
- 系数 * 基数 ^ 索引 之和
十进制 --> 十进制
12345 = 10000 + 2000 + 300 + 40 + 5
= (1 * 10 ^ 4) + (2 * 10 ^ 3) + (3 * 10 ^ 2) + (4 * 10 ^ 1) + (5 * 10 ^ 0)
= (1 * 10000) + (2 + 1000) + (3 * 100) + (4 * 10) + (5 * 1)
= 10000 + 2000 + 300 + 40 + 5
= 12345
规律:
其它进制转换为十进制的结果 = 系数 * 基数 ^ 索引 之和
系数: 每一位的值就是一个系数
基数: 从x进制转换到十进制, 那么x就是基数
索引: 从最低位以0开始, 递增的数二进制 --> 十进制
543210
101101 = (1 * 2 ^ 5) + (0 * 2 ^ 4) + (1 * 2 ^ 3) + (1 * 2 ^ 2) + (0 * 2 ^ 1) + (1 * 2 ^ 0)
= 32 + 0 + 8 + 4 + 0 + 1
= 45
八进制 --> 十进制
016 = (0 * 8 ^ 2) + (1 * 8 ^ 1) + (6 * 8 ^ 0)
= 0 + 8 + 6
= 14
十六进制 --> 十进制
0x11f = (1 * 16 ^ 2) + (1 * 16 ^ 1) + (15 * 16 ^ 0)
= 256 + 16 + 15
= 287
-
十进制快速转换为其它进制
- 十进制除以
基数
取余, 倒叙读取
十进制 --> 二进制
100 --> 1100100
100 / 2 = 50 0
50 / 2 = 25 0
25 / 2 = 12 1
12 / 2 = 6 0
6 / 2 = 3 0
3 / 2 = 1 1
1 / 2 = 0 1
十进制 --> 八进制
100 --> 144
100 / 8 = 12 4
12 / 8 = 1 4
1 / 8 = 0 1
十进制 --> 十六进制
100 --> 64
100 / 16 = 6 4
6 / 16 = 0 6 - 十进制除以
十进制小数转换为二进制小数
- 整数部分,直接转换为二进制即可
- 小数部分,使用"乘 2 取整,顺序排列"
- 用 2 乘十进制小数,可以得到积,将积的整数部分取出,再用 2 乘余下的小数部分,直到积中的小数部分为零,或者达到所要求的精度为止
- 然后把取出的整数部分按顺序排列起来, 即是小数部分二进制
- 最后将整数部分的二进制和小数部分的二进制合并起来, 即是一个二进制小数
- 例如: 将 12.125 转换为二进制
// 整数部分(除2取余)
12
/ 2
------
6 // 余0
/ 2
------
3 // 余0
/ 2
------
1 // 余1
/ 2
------
0 // 余1
//12 --> 1100
// 小数部分(乘2取整数积)
0.125
* 2
------
0.25 //0
0.25
* 2
------
0.5 //0
0.5
* 2
------
1.0 //1
0.0
// 0.125 --> 0.001
// 12.8125 --> 1100.001