深度学习
-
人工智能(Artificial Intelligence)属于计算机科学的分支,是让各类机器载体上模拟并拥有类似生物的智能,让机器可以进行感知、学习、识别、推理等行为的计算机科学技术。
-
机器学习(Machine Learning,ML)是实现人工智能的核心方法,传统的机器学习主要关注如何学习一个预测模型,将数据表示为特征后将特征输入到预测模型,并输出预测结果。现代机器学习则主要由神经网络来完成。
-
神经网络(Neural Network,NN)是机器学习的一个分支,主要关注如何使用神经网络来学习数据的表示,并使用这些表示来完成各种通用类型的任务。
-
深度学习(Deep Learning,DL)是神经网络的一个分支,主要关注如何使用层数较多的且参数较多的神经网络来学习数据。
下面是一个只用加减乘除实现求某数平方根的示例:
# 我们要求解的数
target_number = 17.0
# 初始化权重(我们的猜测值)
weight = 1
# 超参数
learning_rate = 0.01 # 学习率
epochs = 1000 # 训练轮数
# 训练过程
for epoch in range(epochs):
# 前向传播: 计算预测值 (weight * weight 应该等于 target_number)
prediction = weight * weight
# 计算损失: 均方误差 (MSE)
loss = (prediction - target_number) ** 2
# 反向传播: 计算损失(loss)对权重(weight)的梯度
gradient = 2 * (prediction - target_number) * 2 * weight
# 更新权重 (梯度下降)
weight = weight - learning_rate * gradient
# 最终结果
print(f"\n训练后的平方根估计值: {weight}")
print(f"误差: {target_number - prediction}")
上述代码展示了机器学习的核心概念:
- 学习率:控制每次参数更新的步长