Skip to main content

摄像头云台控制指令解析

· 12 min read
Allen
software engineer
此内容根据文章生成,仅用于文章内容的解释与总结

购买了一款云台摄像头,你可以在淘宝搜这个关键词知道它长什么样子。

它默认能通过 RS232 协议控制云台转动,但是现在新的主板已经没有这种圆形的接口了,基本都是 USB。

他也可以通过遥控器控制,但是我想尝试自己编写逻辑代码通过键盘控制。

效果是通过监听键盘上下左右等事件,调用对应云台运动的指令,运动到合适角度之后可以按下空格停止云台运动,按下 ESC 退出控制程序。

也可以按下某个按键如数字1,直接运动到预设角度。

咨询商家后,商家提供了 RS232 协议的指令集,所以这里通过 python 的 serial 库尝试通过 USB 口对其云台调用。

RS232 协议说明书

CommandCommand PacketComments
Stop8x 01 06 01 VV WW 03 03 FFVV: Pan Speed
Left8x 01 06 01 VV WW 01 03 FFWW: Tilt Speed
Right8x 01 06 01 VV WW 02 03 FFYYYY: Pan Position
Up8x 01 06 01 VV WW 03 01 FFZZZZ: Tilt Position
Down8x 01 06 01 VV WW 03 02 FF
UpLeft8x 01 06 01 VV WW 01 01 FF
UpRight8x 01 06 01 VV WW 02 01 FF
DownLeft8x 01 06 01 VV WW 01 02 FF
DownRight8x 01 06 01 VV WW 02 02 FF
Absolute Position8x 01 06 02 VV WW 0Y 0Y 0Y 0Y 0Z 0Z 0Z 0Z FF
Relative Position8x 01 06 03 VV WW 0Y 0Y 0Y 0Y 0Z 0Z 0Z 0Z FF
Home8x 01 06 04 FF
Reset8x 01 06 05 FF

这里有一些复合指令,譬如 UpRight:向上的同时向右,如果是手柄控制比较好,键盘控制比较鸡肋,所以这里我们实现:上下左右、暂停、复位、绝对定位这几个能用到与可能会用到的。

基数转换

这里的绝对定位和相对定位部分,出现了0Y 0Y 0Y 0Y0Z 0Z 0Z 0Z,我希望传入一个 10 进制的角度,譬如0、90、180,怎么映射到其中呢?这就体现我们学完二进制之后的敏感度了,把 20 转成 2 进制的过程是:

20 ÷ 2 = 10 余数: 0
10 ÷ 2 = 5 余数: 0
5 ÷ 2= 2 余数: 1
2 ÷ 2=1 余数: 0
1 ÷ 2= 0 余数: 1
按余数倒序排列: 10100

这里我们观察范例,对数据做了拆分,即如果需要把10进制映射到16进制上,譬如17转成16进制是11,那么应该变成0101。每个位置之间插入0

所以可以写出如下代码:

def calculate_pan_position_bytes(pan_pos_value):
HEX_VALUES = [4096, 256, 16, 1] # 定义常量
pan_pos_ints = []
for i, value in enumerate(HEX_VALUES):
pan_pos_ints.append(pan_pos_value // value)
pan_pos_value %= value
# 转换为2位16进制字符串
pan_pos_strs = [f"{i:02X}" for i in pan_pos_ints]
return "".join(pan_pos_strs)
# 将17转化为16进制,应该是11,拆分加0,应该是0101
# 前方补0到总长度为8位,结果与我们预期一致
print(calculate_pan_position_bytes(17))
# 00000101

接下来通过代入0到6000这样的数值传输给串口后发现,只能向左转。

0对应居中,4500对应向左转180,数字再大也是转到底。

4500比180 = 25比1,所以我们输入角度,乘以25就得到了对应的信号值。

根据手册说明水平转动范围为355度,一半则是177.5度,与肉眼观察基本一致,Z轴的范围是上下各21度。

刚刚只能向左转,那么向右转的答案就呼之欲出了,要么是补码(异或运算后加1),要么是首位为符号位。我们添加上限位和映射,先用补码试试完成这个函数(结果直接成了)。

def calculate_pan_position_bytes(pan_pos_value, axis_type):
"""
计算轴(旋转)的位置字节。

参数:
pan_pos_value (int): 位置值,
axis_type (str): 轴的类型 ('y' or 'Y' for Y-axis, others for Z-axis)

返回:
pan_step_str (str): 计算得到的平移位置字节,格式为十六进制字符串。
"""
if axis_type.lower() == "y":
pan_pos_value = max(-177.5, min(pan_pos_value, 177.5)) # 限制取值范围
else:
pan_pos_value = max(-21, min(pan_pos_value, 21)) # 限制取值范围

pan_pos_value = int(pan_pos_value * 25) # 将角度转换为步长
pan_direction = "-" if pan_pos_value < 0 else "+" # 设定旋转方向
pan_pos_value = abs(pan_pos_value) # 取绝对值

HEX_VALUES = [4096, 256, 16, 1] # 定义常量

pan_pos_ints = []
for i, value in enumerate(HEX_VALUES):
if pan_direction == "+":
pan_pos_ints.append(pan_pos_value // value)
else: # 异或操作
pan_pos_ints.append((pan_pos_value // value)^ 0xF)
if i == 3 : # 最后一个数字,取反后加1
pan_pos_ints[-1] = pan_pos_ints[-1]+1
pan_pos_value %= value

# 转换为2位16进制字符串
pan_pos_strs = [f"{i:02X}" for i in pan_pos_ints]
return "".join(pan_pos_strs)

代码目标效果

希望具体的指令都可以通过 Python 函数来实现,同时暴露出所有可能需要修改的参数。最后关联键盘事件。例如:

camera_control.py
import keyboard
from usbcamera import *
from usbcamera import move_to_absolute_position
"""
设备 "/dev/ttyUSB0" 的云台旋转至绝对定位:
Y轴转到180度,速度为9.
Z轴转到30度,速度为10
"""
move_to_absolute_position(vv=9, ww=10, Y=180, Z=30, device="COM16")

# 关联键盘事件和控制函数
keyboard.on_press_key("up", lambda _: turn_up(device="COM16"))
keyboard.on_press_key("down", lambda _: turn_down(device="COM16"))
keyboard.on_press_key("left", lambda _: turn_left(device="COM16"))
keyboard.on_press_key("right", lambda _: turn_right(device="COM16"))
keyboard.on_press_key("enter", lambda _: move_home(device="COM16"))
keyboard.on_press_key("space", lambda _: turn_stop(device="COM16"))
# 按下数字1则转动到水平最左,垂直最下,可以根据自己需要多预设几个目标角度。
keyboard.on_press_key("1", lambda _: move_to_absolute_position(vv=10, ww=10, Y=180, Z=-30, device="COM16"))

# 让脚本保持运行状态以捕获事件
keyboard.wait("esc") # 按 'esc' 键退出

信号机制

  • 当收到左转信号时,摄像头会持续左转,直到到达限位位置或接收到新指令。

  • 如果想要提前结束左转,可以在发送左转信号一定时间后发送停止指令,摄像头收到停止指令时会停止。

  • 每个云台旋转操作会持续一定时间,如果在旋转期间收到其他指令,会终止旧指令,执行当前指令。

逻辑代码

通常在 Windows 系统上,串口名称通常是 COMx(如 COM1、COM2),而在 Linux 系统上通常是/dev/ttyUSBx(如/dev/ttyUSB0)。

usbcamera.py
#!/usr/bin/env python3
# coding:utf-8

import serial
import serial.tools.list_ports
import time

# VISCA命令集
commands = {
"stop": "81010601{vv}{ww}0303FF",
"left": "81010601{vv}{ww}0103FF",
"right": "81010601{vv}{ww}0203FF",
"up": "81010601{vv}{ww}0301FF",
"down": "81010601{vv}{ww}0302FF",
"upleft": "81010601{vv}{ww}0101FF",
"upright": "81010601{vv}{ww}0201FF",
"downleft": "81010601{vv}{ww}0102FF",
"downright": "81010601{vv}{ww}0202FF",
"absolute_position": "81010602{vv}{ww}{Y}{Z}FF",
"relative_position": "81010603{vv}{ww}{Y}{Z}FF",
"home": "81010604FF",
"reset": "81010605FF",
}


def send_visca_command(command, device):
"""
通过串口向摄像机发送VISCA命令。

参数:
command (str): 要发送的VISCA命令,格式为十六进制字符串。

返回:
response (bytes): 从摄像机接收到的响应。
"""
try:
ser = serial.Serial(device, 9600, timeout=1) # 初始化串口
command_bytes = bytearray.fromhex(command) # 将命令转换为字节
ser.write(command_bytes) # 发送命令
response = ser.read_all() # 读取响应
ser.close() # 关闭串口
return response
except:
ports_list = list(serial.tools.list_ports.comports())
if len(ports_list) <= 0:
print("未发现端口")
else:
for comport in ports_list:
if "USB" in str(comport):
print("发现USB端口:", comport.device, comport.description)


def calculate_pan_speed_bytes(pan_speed_value):
"""
计算轴(旋转)的位置字节。

参数:
pan_speed_value (int): 速度值,0-16

返回:
pan_step_str (str): 计算得到的平移位置字节,格式为十六进制字符串。
"""

pan_speed_value = max(0, min(pan_speed_value, 16)) # 限制取值范围

# 转为2位16进制
return f"{pan_speed_value:02X}"


def calculate_pan_position_bytes(pan_pos_value, axis_type):
"""
计算轴(旋转)的位置字节。

参数:
pan_pos_value (int): 位置值,
axis_type (str): 轴的类型 ('y' or 'Y' for Y-axis, others for Z-axis)

返回:
pan_step_str (str): 计算得到的平移位置字节,格式为十六进制字符串。
"""
if axis_type.lower() == "y":
pan_pos_value = max(-177.5, min(pan_pos_value, 177.5)) # 限制取值范围
else:
pan_pos_value = max(-21, min(pan_pos_value, 21)) # 限制取值范围

pan_pos_value = int(pan_pos_value * 25) # 将角度转换为步长
pan_direction = "-" if pan_pos_value < 0 else "+" # 设定旋转方向
pan_pos_value = abs(pan_pos_value) # 取绝对值

HEX_VALUES = [4096, 256, 16, 1] # 定义常量

pan_pos_ints = []
for i, value in enumerate(HEX_VALUES):
if pan_direction == "+":
pan_pos_ints.append(pan_pos_value // value)
else: # 异或操作
pan_pos_ints.append((pan_pos_value // value)^ 0xF)
if i == 3 : # 最后一个数字,取反后加1
pan_pos_ints[-1] = pan_pos_ints[-1]+1
pan_pos_value %= value

# 转换为2位16进制字符串
pan_pos_strs = [f"{i:02X}" for i in pan_pos_ints]
return "".join(pan_pos_strs)


def create_command(command_key, vv=10, ww=10, Y=None, Z=None):
"""
创建VISCA命令。

参数:
command_key (str): 命令键名。
vv (str): 水平方向速度,取值范围为0-16
ww (str): 垂直方向速度,取值范围为0-16
Y (str): 控制水平旋转的位置。
Z (str): 控制垂直旋转的位置。

返回:
command (str): 格式化后的VISCA命令字符串。

异常:
ValueError: 当命令需要Y和Z参数时,若未提供,则抛出异常。
"""
if command_key in ["home", "reset"]:
return commands[command_key]
if command_key in ["absolute_position", "relative_position"]:
if Y is None or Z is None:
raise ValueError("Y和Z为位置命令,必须提供")
return commands[command_key].format(
vv=calculate_pan_speed_bytes(vv),
ww=calculate_pan_speed_bytes(ww),
Y=calculate_pan_position_bytes(Y, "y"),
Z=calculate_pan_position_bytes(Z, "z"),
)

return commands[command_key].format(
vv=calculate_pan_speed_bytes(vv),
ww=calculate_pan_speed_bytes(ww),
)


# 控制函数示例
def turn_stop(vv=0, ww=0, device="/dev/ttyUSB0"):
return send_visca_command(create_command("stop", vv, ww), device)


def turn_left(vv=10, ww=10, device="/dev/ttyUSB0"):
return send_visca_command(create_command("left", vv, ww), device)


def turn_right(vv=10, ww=10, device="/dev/ttyUSB0"):
return send_visca_command(create_command("right", vv, ww), device)


def turn_up(vv=10, ww=10, device="/dev/ttyUSB0"):
return send_visca_command(create_command("up", vv, ww), device)


def turn_down(vv=10, ww=10, device="/dev/ttyUSB0"):
return send_visca_command(create_command("down", vv, ww), device)


def move_home(device="/dev/ttyUSB0"):
return send_visca_command(create_command("home"), device)


def move_to_absolute_position(vv=10, ww=10, Y=0, Z=0, device="/dev/ttyUSB0"):
return send_visca_command(create_command("absolute_position", vv, ww, Y, Z), device)

后话

硬件相比软件来说,资料比较少,所以编写过程主要靠经验。

猜测轴旋转的角度和 4 个参数对应关系是最有意思的过程,有趣的功能背后全是数学。